4. PARAMETRIC UNCERTAINTY ANALYSIS

The purpose of the parametric uncertainty analysis is to identify which parameters are
jmportant to treat as uncertain in the flow and transport modeling. As previously discussed,
uncertainty in parameter values and the need to include that uncertainty in the risk assessment
prohibit a deterministic approach to the modeling. Despite this, if uncertainty in a given parameter
has a minimal impact on the results, the value of including it in the Monte Carlo process is
outweighed by the additional computational effort. To optimize the modeling process, a parametric
uncertainty analysis was performed to identify which parameters to carry forward as uncertain and
which to set as constant, best estimate, values. This analysis was performed for the Milrow site.
Though the different locations of the three test cavities relative to the transition zone might be
expected to lead to somewhat different results, the final parameters identified as important for
Milrow coincide with those expected to be most important based on hydrogeologic principles.

The processes evaluated through their flow and transport parameters include recharge,
saltwater intrusion, radionuclide transport, glass dissolution, and matrix diffusion. The end result
of this analysis is a relative comparison of the effect of uncertainty of each individual parameter on
the final transport results in terms of the arrival time of mass of radionuclides crossing the seafloor.
First to be considered is the density-driven flow problem associated with saltwater intrusion, and
the parameters affecting this process are denoted as the flow parameters. Second is the radioactive
transport problem, where the movement of radionuclides from the test cavity fo the seafloor is
studied and the parameters of concern in this process are denoted as transport parameters.

4.1 Sensitivity/Uncertainty Analysis of Flow Parameters

The parameters of concern here are the hydraulic conductivity, K, the recharge, Rech, and the
longitudinal and transverse macrodispersivities, Ay, and A7, Since the saltwater intrusion problem
encounters a density-driven flow, the macrodispersivities are considered as flow parameters. In
addition, the porosity is also considered at this stage as the spatial variability of porosity between
the chimney and the surrounding area affects the solution of the saltwater intrusion problem. In all
cases, the flow and the advection-dispersion equations are solved simultaneously until a steady-state
condition is reached. The solution provides the groundwater velocities and the concentration
distribution that can be used to identify the location and thickness of the transition zone. For each
of the four parameters, a random distribution of 100 values below and above a “mean” value close
to the calibration result is generated. Figure 4.1 shows the histograms for Rech, K, 0, and Ay . The
transverse macrodispersivity, Ay, is taken as 4y /10, as is commonly assumed in transport modeling.
As can be seen from the figure, the distribution of random recharge values covers arange of values
extending from one-fourth the calibrated value to about double that value. A lognormal distribution
was used to generate the recharge values and the distribution was truncated such that the upper and
lower limits lead to reasonable transition zone movement around the location indicated by the
chemistry data. From the 100 random values, the minimum recharge value is about 0.328 cm/year
and the maximum is about 2.205 cm/year. This range lies within the recharge estimates obtained
using temperature logs as discussed in Section 2.6.1.
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Figure 4.1. Randomly generated distributions for the parameters governing the solution to the flow
problem. These distributions are used for the individual-parameter uncertainty analysis.
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The uncertain conductivity values are generated from a lognormal distribution and have amean
value of 6.773 x 10 m/day, which is equivalent to the Milrow calibration value and it also lies
between the geometric and arithmetic means of the conductivity data. These means for the full data
set are 1.862 x 10-3 and 1.137 x 10-2 m/day, respectively. If an average value is computed for each
of the six wells, these mean values become 1.9953 x 103 and 1.575 x 10-2 m/day. In both cases, the
mean of the generated random distribution lies between the geometric and the arithmetic means. The
maximum conductivity value among the generated 100 values is 2.445 x 102 m/day, whereas the
minirum value is 1.5 x 103 m/day. This range is considered sufficient to yield realistic results. That
is, by changing the uniform K value applied to the whole domain based on this distribution and
keeping all the other parameters fixed, the resulting transition zone lies within the simulation
domain. It should be mentioned here that values of conductivity beyond this range yield transition
zones far from the one identified from the chemical data. For example, any conductivity value
smaller than 1.5 x 103 m/day (with all other parameters fixed at their calibrated values) yields a
transition zone depth greater than 2,000 m, which is more than double the depth indicated by the
data (about 850 m).

From these conductivity limits and those of the recharge, the recharge-conductivity ratio is
changing from 1.26 x 103 to 2.05 x 102 for the conductivity sensitivity values, and from 1.35 x 103
to 9.05 x 10-3 for the recharge sensitivity case. In both cases, the range of this ratio encompasses the
estimate of 6.88 x 10-3 obtained by Wheatcraft (1995). However, the recharge and conductivity
values considered in that study were about one order of magnitude larger than the values used here.
It should be mentioned here that the recharge-conductivity ratio is the factor that controls the
location of the transition zone, but the magnitude of the velocity depends on the recharge and
conductivity values.

The large macrodispersivity values are considered to account for the additional mixing
resulting from spatial variability that is not considered in the model. Although the base-case value
chosen for longitudinal macrodispersivity is about 100 m, the mean of the distribution shown in
Figure 4.1 is 300 m. This is done mainly to avoid violation of the Peclet number when small
macrodispersivity values are used. Based on the distribution shown, the macrodispersivity values
are taken between a minimum of 60 m and a maximum of 500 m. As mentioned earlier, the
macrodispersivity changes the width of the transition zone, which affects the flow pattern and the
location of the converging flow towards the seafloor.

Porosity in the cavity and chimney is assumed to be higher than the rest of the simulation
domain. For all cases considered in this study, the chimney and cavity porosity is set to a fixed value
of 0.07 as discussed earlier. The rest of the domain is assigned a fracture porosity value that is
obtained from the random distribution generated for the fracture porosity. The random distribution
of the porosity gives a minimum value of about 1.294 x 105 and a maximum value of 3.8 x 103,
The mean of the 100-value random distribution is about 5.2 x 104,
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Figure 4.2. Finite-element mesh with the upper left half of the domain refined and chimney location

highlighted.

4.1.1 Numerical Approach for the Parametric Uncertainty Analysis

Having generated these individual random distributions for each of the parameters considered,
the variable-fluid-density groundwater flow problem is solved using FEFLOW. A new mesh is
generated that is different from the one shown in Figure 2.8. The mesh remains refined in the entire
left upper triangle of the simulation domain since the transition zone varies a lot with the random
parameters selected. Therefore, a grid size of about 100 m is used in the upper left half of the domain
and a 200-m grid is used in the lower right half (Figure 4.2). The 100-m grid size is consistent with
the scale of the hydraulic and chemistry data, which were collected from straddle-packed intervals
having an average length of 85 m. Figure 4.2 also shows the location of the cavity and chimney. The
chimney is assumed to extend all the way up to ground surface, to account for near-surface fractures
due to spalling and disruption from the surface collapse. Porosity and conductivity in the cavity and
chimney are different from the rest of the domain as mentioned earlier.

The FEFLOW code deals with the flow and saltwater transport problems simultaneously in a
transient mode. The transient solution continues for a certain number of time steps determined by
the user. In simulations, a steady-state velocity distribution is assumed, and as such FEFLOW runs
for a large number of time steps to reach steady state. A very large simulation time is implemented
for all realizations considered. However, FEFLOW has an automatic time step configuration
algorithm that allows for increasing the size of the time step when the changes in the flow solution
are slow and the system is approaching steady state. At the beginning of the simulation, the size of
the time step is very small, but it gradually increases as the solution approaches steady state. Foreach
individual realization, the head and concentration values are monitored at a number of points within
and around the transition zone as a function of time. If at the end of the simulation time the head and
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concentration do not reach constant values, the simulation is repeated with a longer time until steady
state is reached. This guarantees that all the runs reach steady state and that the obtained solution
is stable and representative of the equilibrium state of the system.

4.1.2 Sensitivity of Concentration and Head Distributions to Flow Parameter Uncertainty

For each one of the four parameters considered, a set of 100 velocity and concentration
distributions is obtained that corresponds to the 100 random input values. For the simulated head
and concentration values at UAe-2, the mean of the 100 realizations as well as the standard deviation
of the result are computed. Figure 4.3 through Figure 4.6 show the sensitivity of the concentration
and head to the recharge, conductivity, porosity and macrodispersivity. In each figure, the mean of
the Monte Carlo runs, the mean + one standard deviation, the base-case (all parameters take their
mean values) result, and the data points are plotted. Figure 4.3 shows the sensitivity of concentration
and head profiles to changes in the recharge values. The one standard deviation confidence interval
around the mean captures most of the data points for concentration and for head measurements. The
conductivity case (Figure 4.4) covers the high concentration data (saltwater side) but gives lower
concentrations than the data for the freshwater side of the transition zone. The head sensitivity to
conductivity variability shown in Figure 4.4 indicates that the confidence interval encompasses all
the head data at UAe-2.

Tt should be mentioned here that the base-case results are different than those shown in
Figure 2.15 and Figure 2.16 of the calibration results (the dashed lines on those figures). This is due
to adding the chimney effect, which is not present in the pre-test calibration analysis. It is assumed
that the cavity and chimney are isotropic, which means that the vertical conductivity is 10 times
larger than the surrounding area. In addition, the porosity in the cavity and chimney is kept in all
realizations at a value of 0.07, even when the fracture porosity is drawn randomly from its assumed
distribution. This leads to a base-case result that is different from the one established from
calibration. The other aspect to discuss here is the use of the pre-test data for this comparison. It is
evident that incorporating the cavity and chimney conditions only slightly changes the head and
concentration profiles at UAe-2. Therefore, the pre-test data can still be considered as providing
guidelines for choosing the model parameters and controlling the range of variability around the
base-case values. The assumptions employed in this analysis are that the short-term effects of the
nuclear test are neglected as the long-term behavior of the radionuclides is controlled by the
steady-state conditions of the island. The only long-term effects considered are the porosity and
conductivity changes in the cavity and chimney.

Figure 4.5 shows the effect of the fracture porosity parametric uncertainty on the resulting
heads and concentrations at UAe-2. As expected, the porosity does not affect the solution of the flow
problem even with the chimney having a different porosity. The porosity only influences the speed
at which the system converges to steady state and as such, simulated heads and concentrations at
UAe-2 do not show any sensitivity to the fracture porosity value outside the chimney. It should be
remembered that the fracture porosity outside the chimney and cavity area will have a dramatic
effect on travel times and radioactive decay of mass released from the cavity and migrating toward
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Figure 4.3.  Sensitivity of UAe-2 concentration and heads to recharge in the first modeling stage.
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Figure 4.4.  Sensitivity of UAe-2 concentration and heads to conductivity in the first modeling stage.
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the seafloor. This will be demonstrated later when the effect of these parameters on travel times is
analyzed.

The macrodispersivity effect is displayed in Figure 4.6. The macrodispersivity range of 60 m
to 500 m considered in this sensitivity case has a minor effect on the head and concentration at
UAe-2, especially at the center of the transition zone. This is to be expected since macrodispersivity
leads to more or less dispersion around the center of the transition zone. Again, the final decision
as to whether the changes in macrodispersivity would be important to include in the final modeling
stage cannot be determined from these results. The criterion for selecting the most influential
parameters is determined by analyzing the transport results in terms of travel times from the cavity
to the seafloor and location where breakthrough occurs. The set of figures discussed here indicates
that the simulated heads and concentrations at UAe-2 are most sensitive to conductivity and recharge
and least sensitive to fracture porosity outside the chimney and macrodispersivity. This picture may
be confirmed or changed by analyzing the travel time statistics for particles originating from the
cavity and breaking through the seafloor.

The output of this stage is a set of 100 velocity realizations for each of the four parameters
considered. These velocity realizations are used to model the radionuclide transport from the cavity
toward the seafloor. The transport parameters are kept fixed at their means while addressing the
effect of the four parameters that change the flow regime. When the effect of transport parameters,
such as matrix diffusion coefficient, glass dissolution rate, etc., is studied, a single velocity
realization with the flow parameters fixed at the calibration values is used. The following section
presents the uncertainty analysis for the transport parameters. Following that discussion, the results
of the parametric uncertainty analysis for both the flow and transport parameters are presented.

4.2 Sensitivity/Uncertainty Analysis of Transport Parameters

In transport simulations where the radionuclides are divided among surface-deposited nuclides
and volume-deposited nuclides trapped in puddle glass, the dissolution rate, k,, becomes an
important factor affecting transport results. However, there exists a large degree of uncertainty in
estimating this parameter, which leads to a couple of orders of magnitude range for the release rate.
To analyze the effect of this uncertainty on transport results, a 100-value random distribution of
variability for k, ranging from 1.56 x 108 days™® to 2.54 x 10 days™! with a mean of about 2.44
x 107 days™! is generated from a lognormal distribution. Figure 4.7 shows a histogram of the random
distribution used in the sensitivity analysis (top) and how the release of nuclides from the puddle
glass is influenced by this range of variability (bottom). This analysis is performed using a single
flow realization and the transport simulations are performed for 100 different kg values.

A similar analysis is performed to analyze the effect of the local dispersivity, oz . An important
point here is that the macroflocal dispersivity is used in both the flow and transport simulations.
Since flow simulations involved solving the saltwater intrusion problem, the macrodispersivity
values were used in the analysis of flow parameters. However, these macrodispersivity values were
chosen to be very large for a number of reasons. First, FEFLOW solves the flow and transport
equations using a finite-element technique. A Peclet number criterion has to be met for a stable

104



1 4 1 1 1 1 b

..'_ MC m'ean

Sensitivity to Porosity — - Mean 40 4

200
— - Mean

— Base Case
40 © © Measurements
60 i
-] i
E 800 2
£ 1000 T
§- -]
ya0q- ° N ]
1400- h
1600 8 N
1800 T
1 1 L 1 1 L 1 1
200 1] 0.2 0.4 0.6 08 1 1.2 1.4 16 1.8 2
Cl Concentration (mg/L) x1d
5 1 ) 1 L] ¥ Ll
oF Sensitivity to Porosity 4
L+]
— =500 T
E
-l
o -100¢- - 7
4 o o
[o}]
& -1500- 1
£
[.+]
.5 -2000- 1
=
 -2500- T
w - MC mean
-3000- - - Mean o -
1 - - Mean ©
— Base Case
-3500 : || O Measurements]
- 131 1 1 1 1 1
400-5 0 5 10 15 20 25 30

Environmental Head (m)
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finite-element solution. The Peclet number, P,, associated with the finite-element solutions to the
advection-dispersion equation can be approximated by the ratio (VAx) / (4L V) = (Ax) / (AL). To
obtain a stable solution when using an implicit finite-element scheme, the Peclet number should be
kept less than unity and thus a very fine grid would be needed for small values of longitudinal
macrodispersivity A . This becomes prohibitive in terms of storage and CPU time due to the large
extent of the simulation domain (8,000 m x 4,000 m). Therefore, the longitudinal macrodispersivity
is chosen very large to ensure a stable solution over a grid of an average size of about 100 m. The
second reason for choosing such large macrodispersivities in the flow simulations is the fact that
chemistry data show a largely dispersed transition zone which we tried to reproduce during
calibration. It is also important to remember that no spatial variability is included in the medium
conductivity, which usually adds a macro-dispersion effect to the transition zone spreading. A large
macrodispersivity value may be used as a surrogate to spatial variability in hydraulic conductivity
~ (e.g., Gelhar and Axness, 1983; Hess et al., 1992). For all these reasons, a large asymptotic

macrodispersivity is used in flow simulations with a range extending from 60 m to 500 m as
discussed ecarlier.

Although the dispersivity is a porous medium property, the dispersivity values used in transport
simulations are chosen much smaller than those used in the saltwater intrusion problem. The reason
for that choice is twofold. First, it is more conservative to select a small dispersivity value that
reduces dispersion and leads to a higher flux and concentration peaks. Second, the strong variability
of the velocity field at and around the transition zone dominates the dispersion process rendering
the local-scale dispersion effect very minor. In addition, the macrodispersivity used for the saltwater
intrusion problem introduces an artificial dispersion process that compensates for neglecting the
spatial variability of hydraulic conductivity.

The calibrated flow model at a grid scale of about 100 m is used to perform random walk
particle-tracking experiments for which there is no lower limit for the local dispersivity value that can
be used. The longitudinal local dispersivity, gz, is thus changed from a minimum of about 0.56 m to
a maximum of 19.5 m. The 100-value distribution that is generated from a lognormal distribution has
amean of about 5.0 m and is shown in Figure 4.8. Transverse local dispersivity, az, is taken as one
tenth of the longitudinal value. Again, these 100 simulations are performed using a single FEFLOW
output for the purpose of analyzing the effect of local dispersivity alone.

The last parameter to be analyzed within transport simulations is the matrix diffusion
parameter, k. Based on the discussion of Section 3.2.3, a best estimate for k of 1.37 day1/2 was
derived (consistent with 8,, of 0.12, b of 5.0 x 10 and D, * of 3.2745 x 10-5 m?/day). This value
leads to a very strong diffusion into the matrix, which significantly delays the mass arrival to the
seafloor, producing no mass breakthrough at the seafloor within the selected time frame of about
27,400 years of this first modeling stage. As there is a large degree of uncertainty in determining
this parameter manifested in the uncertainty in b and Dy, *, and there is uncertainty derived by the
conceptual model assumptions for diffusion (e.g., assumption of an infinite matrix), values for k that
are smaller than the best estimate of 1.37 were chosen. A random distribution of 100 values is
generated for k with a minimum of 0.0394, a maximum of 1.372 and a mean of 0.352. This mean
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Figure 4.8. Randomly generated distribution for longitudinal local dispersivity for the first modeling
stage.

is close to the k value of 0.434 that is obtained from the same parameters described above for its best
estimate, but using an order-of-magnitude-lower diffusion coefficient. The lower end of the
distribution is yet another order-of-magnitude-lower «. Figure 4.9 shows the distribution of these
values and the effect on the retention function, (¢, ), that is used for matrix diffusion computation.
The distribution shown in Figure 4.9 is generated from a lognormal distribution with a standard
deviation adjusted to a minimum and a maximum value close to the ones specified above. The
difference between these two extremes is very significant as depicted by the lower plot of Figure 4.9.
This plot shows how the retention function behaves with different x values. As can be seen, the
function has a lower peak and a much longer tail for higher values of k. This function indicates that
if there is a single pulse of conservative (and no matrix diffusion) mass flux crossing the seafloor
at time t = 1,000 days within a time step of At and with unit value, the mass flux after including the

o

matrix diffusion effect is given by y(z, T) x At. This implies that I ¥(t,7)dt = 1.0 for any value of T.
0

The analysis here is performed using a single flow realization and a single particle-tracking
realization with the mean values of transport parameters (0 =5.0 m and kg =1.26 x 10”7 days1). The
conservative breakthrough of this realization is convoluted with the y function (Equation 3.14) for
100 realizations of the parameter k that are generated as discussed above. The resuiting 100
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breakthrough curves are analyzed for arrival time and location of the breakthrough with respect to
the bathymetric profile.

4.3 Results of the Parametric Uncertainty Analysis

The transport modeling described in the previous section is applied to the four cases dealing
with flow parameters, and the results of the 100 Monte Carlo realizations for each parameter are
analyzed in terms of mean arrival time and location of breakthrough. For all these cases, the
particle-tracking experiments are performed with a time step of 100 days and for a total simulation
time of 107 days (27,400 years). Transport parameters such as glass dissolution, local dispersivity
and matrix diffusion parameter are kept unchanged in all these cases. Longitudinal and transverse
local dispersivities, a7 and ar, are taken as 5.0 m and 0.5 m, respectively, and matrix diffusion
parameter, x, is fixed at 0.434 and 0.0434 days'1/2. In each case, 100 conservative, total mass flux,
Q(f), breakthrough curves are obtained and then convoluted with the matrix-diffusion gamma
function of Equation (3.14) to yield the undecayed breakthrough curves for a 100% hydraulic release
scenario. Due to the matrix diffusion effect, the mass that breaks through within the time frame of
27,400 years is far less than 100% of the total mass released within the cavity. Therefore, the
breakthrough curves are analyzed in terms of the mean arrival time of the mass that breaks through
within this time frame and the location of this breakthrough along the bathymetric profile. Recall
that the purpose of this analysis is to select the parameters for which the associated uncertainty has
the most significant effect on transport results expressed in terms of uncertainty of travel time to the
seafloor and the location where breakthrough occurs. By doing so, the parameters for which the
uncertainty only slightly affects the uncertainty in travel time and transverse location of the
breakthrough can be identified, and as such these parameters are fixed at their best estimate and only
those with significant effects are varied.

In addition to the four parameters discussed here (Rech, K, 6, Ap), the results using the case
with randomly chosen conductivity but with a porous medium porosity of 0.12 are also presented.
This porosity value is the average of all the core measurements for the Kirilof Point and Older
Breccias formations. The objective is to compare a case with a very low fracture porosity and matrix
diffusion to a case with a continuum porous medium that has no matrix diffusion, buta large porosity
value. In the porous medium case, the whole domain including the cavity and chimney is assigned
a uniform porosity of 0.12. The 100 conservative breakthrough curves are then analyzed in a manner
similar to the other cases described above.

The results of the sensitivity analysis performed for the seven parameters, K, Rech, 6, Ar(in
saltwater intrusion), kg, ¢z (in radionuclide transport modeling) and k are summarized in Table 4.1a
and Table 4.1b. The difference between the tables is that the matrix diffusion parameter,k, is
assigned the base-case value of 0.434 day"1/2 in Table 4.1a and the sensitivity value of 0.0434 day172
in Table 4.1b. In addition, the random conductivity case with porous medium porosity is also
presented in Table 4.1a. For each case, the table presents the range of values of the input parameter
(minimum, maximum and mean), the standard deviation, and the coefficient of variation. On the
output side, the results are presented in terms of the statistics of travel time and transverse location

111



(mo[y wnpaw

snolod)
6C 6L0°0 LYTO 62Tt 890 000S8 00V0ET | TFGO0 0T XPEd =0T XSPP'T 0T X LLO ¢-0T X 888°0 {(pfw) 3
LZ 60000 T£00 ¥LTE SPOO OST'T OLLST | 1690 €¥T0 Lel se’0 P6C00 AT?B X
0 - - - - - - 09€'T ¢-0IXZEE  o-0TXPST  ,0IXPPT 0T X981 (y-Kep) %y
uodsuen
0 - - - - - - 0690 SK'E S61 00°S 950 (w) 7o
9t EC0°0  LLOO Peee BIT'0 068C 9SH¥T |LTTT  4-01X8E9 g-01 X 8'¢C g-01XTE g-01 X 671 e
UOISIIuI
12JEM Jjes
0 - - - - - - LT0 T8 00S 00€ 79 (w) Ty
81 ce0’0  BIT'0 OLL'E ZIOO €1E0 S8IS9T |ZLH0  SLVO Lr0T'T YA 82¢0 Y2y
(moyy
amoery)
0 - - - - - - W90 - O0TX¥ED -0T X SHPT 0L X LLG ¢-01 X 8880 (p/w)
AD D U AD o Ueap AD 0 XeW ue3ap WA 1puieley
suonezI[eay (ury) (s1eak L07)
Jo# UONEJ0T] 9SIAASURIY, U], [ARIL
sonsyeig Inding sonsneis ndug

‘ySnomyyealq Jo yoe] o1 anp pandwiod 9q JOU PNOD SISHE)S IIAYM d)JBIIPUL
SaYSE(] "PAIENTEAD ST X UI AJurejraoun a194m 1daoxa ‘e ST X JUaIdLJo00 UOISNIIIP XHjew oY ], "YSno1yeaiq oY) JO UCHEI0] ISIOASHET]
pue sum [2aey suinid uo sispawesed JualSRIp Jo s19a55e oY) Suureduioo mOI[N 10§ sisA[eue Ajurenasun omaweled oY) Jo SINSAY By AqEL

112



001 100 9500 29¢'€ €100 00€0 SOTET |09€'T ¢-0TXTet 9-0LX¥ST  ¢-0IXPPT  g-0T X981 (;-Aep) By
jodsuen
001 LOOD ¥200 99E€€ E€I00 60£0 9L0ET | 0690 SHE ¢ol 00's 9¢'0 {(w) o
L6 ZI0'0 THO'0  T8EE 09T0 S96F TOI'6L | LTTT -0 X8EY c0TX8E ¢ 0IXTE e-01 X +6T°1 ]
uosnnul
121EM J[ES
001 €000 60000 v6EE 9E0°0 TPLO 0S9°0T | TLTO T8 00$ 0og 79 (w) 7y
06 OIT'0 SLEQ HOVE 8ST'0 v8FE O000CT |ZZv0  SLVO LVOT'T (YA 8TE0 323y
(mopy
ainpelr))
86 7810 0990 6I9°€ 6800 0861 881TT | 1¥90 ¢-0FXbey  -01XSHPT ¢-01XLL9 ¢-0T ¥ 388°0 (p/w)
Ad D uzap AD 0 Uea AD 0 e ueapy ur Iajawerey
suonezijesy (wy) (s1eak O1)
Jo# UOTIBDO] ISIDASUBL], S, [9ARIL
sansuelg mding sonsnels indug

“pEp'0 JO FN[eA 5EI-3SEq S} ULY) ISYIE pEp(°() ST ‘Iaaureied UOISIP XLITRW ) UM YSNOIY{EIq 3Y) JO UONEO[

as13aSURI) pue awy [aaex) swad uo siejeurered JuaraIp Jo 199330 oy uliedwod FuIjapow ANANTSUAS UOISTIHIP XUIEW 3y} JO SNSIY QY 3]EL

113



where breakthrough occurs. For each single realization of the radionuclide transport, the mean
arrival time and mean transverse location of the mass that has crossed the seafloor within 27,400
years are recorded. This time frame is used for all cases except the porous medium (no fracture flow)
scenario, where the simulation time is about 5,480,000 years. The resulting ensemble of these values
is used to compute the mean, standard deviation and coefficient of variation of the travel time and
location. These values are presented in Table 4.1a and Table 4.1b along with the number of
realizations (out of 100) that show mass breakthrough within the above-mentioned time frames. The
mean arrival time for the case of K in porous medium flow is significantly larger than the other cases
due to the longer simulation times considered for this case.

To facilitate the comparison between different cases, one would compare the values of the
coefficient of variation on both input and output sides. The case of random conductivity but with
a porous medium conceptualization shown in Table 4.1a is only presented for comparison purposes.
Comparing this case to the similar fracture flow case where matrix diffusion is added (x = 0.0434,
Table 4.1b) indicates that the addition of matrix diffusion reduces some of the variability in the
plume arrival time. Although the simulation time for the porous medium scenario is about 5.5
million years, only 29 realizations show some mass breakthrough. This is attributed to the very small
flow velocities when using a uniform porous medium porosity of 0.12. The porous medium scenario
will not be considered in any further analysis.

Table 4.1a shows that none of the 100 realizations considered showed any breakthrough with
K = 0.434 day /2 for the cases addressing uncertainty in K, Az, g, and kg. This is essentially due
to the strong effect of matrix diffusion with k = 0.434 day-1/2. Recharge uncertainty leads to some
uncertainty in arrival times, which is the least compared to 6 and k uncertainty cases (Table 4.1a).
To avoid the complete elimination of mass by matrix diffusion, which hinders the statistical analysis
of arrival times, we present the uncertainty effects using x = 0.0434 day"1/2 in Table 4.1b.

Among the six cases in Table 4.1b, the two cases encountering variability in the macro/local
dispersivity value lead to very small uncertainty in the travel time and the transverse location in
comparison to other parameters. Although the coefficient of variation of ¢ in radionuclide transport
simulations is higher than that of conductivity and recharge, the resulting coefficients of variation
for travel time and transverse location are much smaller. The glass dissolution coefficient, ;,
encounters the largest variability (coefficient of variation is 1.36), yet the effect on travel time and
transverse location is minor as compared to conductivity and recharge. Therefore, it can be argued
that the uncertainty in these three parameters may be neglected as their variabilities slightly
influence transport results when compared to other parameters. This leaves the four parameters, K,
Rech, 8, and x. The fracture porosity variability with the highest coefficient of variation among these
four parameters leads to the highest variability in mean arrival time. The conductivity on the other
hand leads to the highest variability in transverse location. The first three parameters of this reduced
list influence the solution of the flow problem and thus require multiple realizations of the flow field.
The matrix diffusion parameter is a transport parameter that does not require multiple flow
realizations.
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The final choices for the uncertain parameters for the second modeling stage are the three flow
parameters. The uncertainty of the matrix diffusion parameter will be assessed in a less rigorous
manner within a simple sensitivity analysis. This choice is motivated by the fact that we only have
data pertinent to the solution of the flow problem, which can be used to guide the generation of the
random distributions in the second stage. Head and chloride concentration data can be used as
criteria for determining whether the combined random distributions lead to realistic flow solutions
or not. Given that using the same random distribution for k as in the first stage or skewing it towards
higher or lower values cannot be judged or tested against data, the transport results using a different
x value are compared in the sensitivity section.
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